Conservation of forest biodiversity is vital for mankind as it provides enormous benefits such as biological resources and ecosystem services. Of late, the forests are facing risk and threats such as fragmentation, degradation and forest fires which are responsible for the deteriorating condition.
The progress in the field of science and technology like satellite remote sensing and GIS since the past few decades in India and the world provide an opportunity to track and monitor the changes taking place on the Earth’s surface. Besides, analysis of large spatial data in GIS can also provide insight into the various driving factors which lead to the loss of biodiversity in the threatened ecosystems i.e forests.
This study has attempted to obtain information about the spatial extent of the three forest ecosystem degradation indicators viz. deforestation, fragmentation of forest and forest fires using methodical approach in the Jharkhand state of India. The satellite remote sensing data sets belonging to Landsat-8 were used to analyse the forest cover of Jharkhand state.
To identify the areas of threat, grid cells (5KmX5Km) were generated in GIS domain. Analysis of deforestation was conducted using multi source data of the time periods 1935 and 2015. Evaluation of deforestation spanning over a time period reveals that vital changes have occurred in the forests of Jharkhand and determined 1224 extinct, 248 critically endangered, 318 endangered and 396 vulnerable ecosystem grid cells. The fragmentation analysis has determined 148 critically endangered, 296 endangered and 402 vulnerable ecosystem grid cells. Forest fire point’s data from the year 2005 to 2016 were utilized and analysis was executed. Further frequency of forest fires for each grid was noted. The result indicates that 67.3% of grid cell of Jharkhand forest was affected with forest fire. Conservation status has been evaluated based on the value of threat for each grid which was the fundamental criteria for conservation priority hotspot. About 2.1% of Jharkhand forest ecosystem grids are defined as extremely high ecosystem risk stage and have been designated in the category of conservation priority hotspot-1 followed by 19.7% conservation priority hotspot-2, 41.3% conservation priority hotspot-3, 27.8% conservation priority hotspot-4 and 9.1% lowest conservation priority hotspot-5. This study highlights the capability of integrating remote sensing and GIS data for mapping the forest degradation, which can be useful in formulating the strategies and policies for protection and conservation of forests.