水生生态系统中的藻华研究综述
Mozhgan Ghorbani1赛义德·艾哈迈德·米尔巴盖里2*Amir Hessam Hassani2贾法尔·努里3.以及赛义德·马苏德·莫纳瓦里4
1伊斯兰阿扎德大学环境与能源学院,科学与研究分部,伊朗德黑兰
2伊朗德黑兰伊斯兰阿扎德大学环境与能源学院科学与研究分院环境工程系
3.伊朗德黑兰伊斯兰阿扎德大学环境管理系环境管理系
4伊朗德黑兰伊斯兰阿扎德大学环境与能源学院环境科学系,科学与研究分部
DOI:http://dx.doi.org/10.12944/CWE.9.1.15
摘要
藻类在所有水生生态系统中发挥着重要作用,为水体的所有生物提供所需的初步营养和能量。然而,异常和过度的藻类生长,即所谓的藻华,也同样有害。鉴于藻类在水生环境中的重要性及其对环境变化的敏感性,藻类测量是水质监测项目的关键组成部分。藻华可能对环境、社会、文化和经济环境产生各种不利影响。尽管人类对水体富营养化的生态、生理和功能条件的认识日益深入,但对藻华的系统认识仍然不足。
关键字
藻华;浮游植物;水生生态系统
复制下面引用这篇文章:
刘建军,刘建军,刘建军,等。中国水生生态系统藻类繁殖的研究进展。当代世界环境2014;9(1)DOI:http://dx.doi.org/10.12944/CWE.9.1.15
复制以下内容引用此URL:
刘建军,刘建军,刘建军,等。中国水生生态系统藻类繁殖的研究进展。生态学报,2014;9(1)。可以从://www.a-i-l-s-a.com/?p=5621
文章发表历史
收到: | 2013-12-24 |
---|---|
接受: | 2014-02-15 |
介绍
并非所有藻类都是绿色的,根据其细胞中的主要色素,可以观察到一系列颜色(Imamura et al. 2013)。例如,如果叶绿素a是主要色素,那么藻类的颜色将倾向于绿色。橙藻和红藻含有高水平的胡萝卜素。微藻是浮游植物和周生植物的两种形式。浮游植物悬浮在水柱中生存,而浮游植物通过与植物的石头、沉积物、茎和水生生物的联系而生存。藻类是单细胞的,可以单独观察,也可以作为集群(克鲁尼)或白炽(灯丝)观察。它们属于被称为自养生物的初级生产者。在阳光下,自养生物将水和二氧化碳转化为糖(食物)。在这个过程中,氧气作为副产品产生,有助于鱼类和其他水生生物的生存。浮游植物需要停留在水面吸收阳光进行光合作用。Increase in the number of algal cells is influenced by season, temperature, amount of sunlight penetrating the water column, the amount of inorganic nutrients (minerals) available to compete with other algal and aquatic plants and water retention time in lakes (Simpson,1991). For example, during the summer when light is available, the amount of phosphorus in the lake is controlled by the amount and abundance of algae. Thus, phosphorus has been considered as a limiting nutrient in most freshwater bodies. Excessive amount of algae known as algal bloom in the surface of lakes creates stinking and dense substrates. Algal blooming has become one of the key fields of study on eutrophication of water bodies in recent years (Wu and Xu, 2011). Due to the importance of algal bloom in aquatic ecosystems, the event mechanism has been studied by many researchers worldwide. Li Liu and Tang in 2012 reported spatial and temporal variations of algal bloom events in the coastal waters of the western South China Sea (SCS) from 1993 to 2007. They concluded that twenty-five algal bloom events occurred in summer in the coastal waters of South and Central Vietnam induced by wind-induced, coastal, nutrient upwelling and river discharges; a further eight events occurred in the coastal waters of North Vietnam.Yao et al. (2011)developed a directed Complex Networks (CNs) model of algal blooms based on the characteristics of CNs theory and the primary factors that influenced algal blooms.
Ni等人(2010)评估了壳聚糖改性土壤去除藻华对中国太湖浮游动物群落的影响。他们发现聚合酶链反应-变性梯度凝胶电泳(PCR-DGGE) CR-DGGE可用于研究环境保护或修复工程对浮游动物群落多样性的影响。Barale等人(2008)利用SeaWiFS数据集(1998-2003)研究了地中海的藻华模式和异常情况。Asaeda et al.(2001)对水幕控制水库藻华进行了数值分析。
尽管人类对水体富营养化的生态、生理和功能条件的认识日益深入,但对藻华的系统认识仍然不足。
藻类的季节变化
藻类是一种非常多样化的生物,因此一个湖中可以共存40多种藻类。然而,在湖泊中,优势藻类物种在整个年循环中发生变化,称为藻类演代(Kortmann和Henry, 1990)。在春天和初夏,藻类数量丰富,此时可利用的光线和营养充足,少数生物以藻类为食。在这一阶段结束的同时,许多湖泊出现了清水期(CWP)现象。春天的藻类种群由小而可食用的种类组成。在这个阶段,浮游动物急剧增加,并迅速消耗藻类。结果,水在几个星期内都很清澈。这就是为什么这种现象被称为“清水相”。这种藻类种群逐渐被较大的不可食用的物种所取代,这些物种通常被胶状鞘覆盖。由于夏季有效营养物质的浓度有限,夏季总藻类浓度低于春季(CWP前)。 From the late summer and fall, the stored nutrients in the lake are mixed in the water column and a fresh supply of nutrients is produced. This let the algal population for seasonal re-blooming. During the winter months, algae are able to survive, but usually at low concentrations due to the lower amount of available sunlight and low water temperature (Green and Herron, 2001).
藻华
藻类对水生生态系统是有用和必需的,并为几乎所有生物提供初级能量和营养。然而,异常高水平的藻类生长会导致水体功能的干扰,并通过降低水的清晰度降低水的美学。通过遮阳,积聚的藻类阻止光线到达水生植物(大型植物)的根部。过量的藻类生长增加了死藻,导致它们在夏季分解并降低水体中的DO。缺乏氧会导致缺氧,导致鱼类死亡。高水平的藻类也可能增加水体的pH值。pH值的增加似乎是二氧化碳光合作用增加的副产品。在阳光明媚的夏季傍晚,光合作用消耗二氧化碳后,通常会出现高pH值。日落后,由于光合作用过程的结束,pH值可能会显著下降。这些pH值的极端波动会对敏感的水生物种造成压力。There is also the concern that excessive amounts of algal material formed based on the reaction with chlorine used in water treatment, produce trihalomethanes as carcinogens.It is important to realize that the algal growth is occurred through natural cycles in natural ecosystems.The algal bloom is problematic as a result of direct human manipulation on the environment.Managers should be targeted towards maintaining health and natural algal levels in water bodies.
测量藻类浓度
测量藻类浓度以确定水体的富营养化状况。富营养化是湖泊自然老化过程的标志。低营养水域是指清晰度和深度都很高,藻类含量很少的水域。富含藻类的水体是富营养化的,通常是浑浊的。在中间过程中,具有中等藻类水平的中等分辨率湖泊被称为中营养型湖泊。辛普森在1991年宣布,由于藻类是环境变化的一个强有力的指标,在大多数监测项目中,测量藻类浓度来确定水质的变化。藻类和绿色植物需要叶绿素a的绿色色素来进行光合作用。考虑到叶绿素a与生物量的比例在不同的藻类群体中可能会有所不同,叶绿素a的测量被认为是对藻类浓度的合理估计。叶绿素a用丙酮提取。浓度用分光光度计测定。这可能是测定藻类浓度最可靠的方法,而叶绿素a是从藻类细胞中化学提取的。 The advantages of this method are simplicity and stability sampling. There are some of the limitations associated with the measurement of algal biomass using this technique. As such, algae are not evenly distributed throughout the water bodies so it is necessary to take some water samples every day. In Vermont, the volunteers of the monitoring programs have addressed these limitations by taking an integrated sample proposed by EPA. In this method, the volunteers suggested double measurements of the Secchi depth and determined a water sample as the representative of the water column. Another limitation of this method is that the numbers of algal species have naturally a higher level of chlorophyll a than other algal species. In addition, the concentration of chlorophyll a s fluctuates during the day to maximize photosynthesis efficiency of algae. Constant and repeated measurements would be the best way to deal with these kinds of limitations. Taking water samples at the same time of day and the depth of the water column, the sample is collected, it can reduce these discrepancies. URIWW recommends that the samples of chlorophyll a should be taken between 10 am and 2 pm at the deepest point of the water body at a depth of 1 m. One way for indirect measurement of concentration of chlorophyll a is to measure Secchi depth (estimation of waters clarity). The water clarity degree is a result of the amount of suspended maters in the water column. In areas with low sediment input, there is a strong correlation between concentration of chlorophyll a and Secchi depth. Besides, it is possible to estimate the potential algal content in water bodies using measuremnt of total phosphorus.
低营养湖泊的叶绿素A含量约为1-10 g/Lµ,富营养湖泊的叶绿素A含量可达300 g/Lµ。在非洲南部的Hart Bees port等富营养化湖泊中,叶绿素a的最大值甚至可以达到3000 g/Lµ。由于鳄鱼河上高浓度的磷和硝酸盐,这个大坝已经富营养化,鳄鱼河是家庭和工业废水的流入和主要污染源(明尼苏达州污染控制机构,2008年)。总体而言,湖泊富营养化状况由叶绿素a、总磷和Secchi深度决定。每个参数都有自己的弱点。因此,如果将这三个参数结合起来考虑,将有助于完整地描述水质以及水体中水质与藻类生长之间的关系。通过研究生活在湖泊中的藻类物种,可以获得更多关于水质的信息。
有害藻华(HAB)
有害藻华是一种通过释放天然毒素和对其他生物造成机械损伤而对其他生物产生负面影响的藻华,通常与大规模海洋死亡事件有关。有害藻华对海洋哺乳动物和海龟造成有害影响。2004年,佛罗里达州共有107只海豚死亡。北大西洋的危险壁暴露于浮游动物污染程度很高的神经毒素中(Green等人,2001年)。
结论
由于大多数湖泊和水体中有害藻类的生长受到越来越多的关注,因此发现藻类生长的预防、预测和限制机制具有重要意义。很明显,限制藻类生长的最好方法是限制排放到湖泊和水体中的营养物质的数量。化学品、硫酸铜和有机合成物可以作为杀虫剂添加到水体中,以减少藻类的生长。与磷酸盐结合的铝缓冲液或钙化合物有时被添加到水体中,使藻类无法使用。当意识到这些化学物质对减少藻类生长有效时,使用这些材料必须获得环境授权单位的许可,并且必须由授权用户完成。其他控制策略有人工曝气、生物控制和物理消除藻类。在曝气机制中,向水体中添加氧气是为了使磷失活或减少藻华的影响。指出了控制水体中藻类数量的生物控制方法。物理去除藻类可以是水过滤藻类。这种控制方法有不同的结果,也可能代价高昂。 The best controlling method is to limit nutrients in water bodies before getting increased. Until algal levels are not annoying, they play an indispensable role in healthy ecosystems.
参考文献
并非所有藻类都是绿色的,根据其细胞中的主要色素,可以观察到一系列颜色(Imamura et al. 2013)。例如,如果叶绿素a是主要色素,那么藻类的颜色将倾向于绿色。橙藻和红藻含有高水平的胡萝卜素。微藻是浮游植物和周生植物的两种形式。浮游植物悬浮在水柱中生存,而浮游植物通过与植物的石头、沉积物、茎和水生生物的联系而生存。藻类是单细胞的,可以单独观察,也可以作为集群(克鲁尼)或白炽(灯丝)观察。它们属于被称为自养生物的初级生产者。在阳光下,自养生物将水和二氧化碳转化为糖(食物)。在这个过程中,氧气作为副产品产生,有助于鱼类和其他水生生物的生存。浮游植物需要停留在水面吸收阳光进行光合作用。Increase in the number of algal cells is influenced by season, temperature, amount of sunlight penetrating the water column, the amount of inorganic nutrients (minerals) available to compete with other algal and aquatic plants and water retention time in lakes (Simpson,1991). For example, during the summer when light is available, the amount of phosphorus in the lake is controlled by the amount and abundance of algae. Thus, phosphorus has been considered as a limiting nutrient in most freshwater bodies. Excessive amount of algae known as algal bloom in the surface of lakes creates stinking and dense substrates. Algal blooming has become one of the key fields of study on eutrophication of water bodies in recent years (Wu and Xu, 2011). Due to the importance of algal bloom in aquatic ecosystems, the event mechanism has been studied by many researchers worldwide. Li Liu and Tang in 2012 reported spatial and temporal variations of algal bloom events in the coastal waters of the western South China Sea (SCS) from 1993 to 2007. They concluded that twenty-five algal bloom events occurred in summer in the coastal waters of South and Central Vietnam induced by wind-induced, coastal, nutrient upwelling and river discharges; a further eight events occurred in the coastal waters of North Vietnam.Yao et al. (2011)developed a directed Complex Networks (CNs) model of algal blooms based on the characteristics of CNs theory and the primary factors that influenced algal blooms.
Ni等人(2010)评估了壳聚糖改性土壤去除藻华对中国太湖浮游动物群落的影响。他们发现聚合酶链反应-变性梯度凝胶电泳(PCR-DGGE) CR-DGGE可用于研究环境保护或修复工程对浮游动物群落多样性的影响。Barale等人(2008)利用SeaWiFS数据集(1998-2003)研究了地中海的藻华模式和异常情况。Asaeda et al.(2001)对水幕控制水库藻华进行了数值分析。
尽管人类对水体富营养化的生态、生理和功能条件的认识日益深入,但对藻华的系统认识仍然不足。
藻类的季节变化
藻类是一种非常多样化的生物,因此一个湖中可以共存40多种藻类。然而,在湖泊中,优势藻类物种在整个年循环中发生变化,称为藻类演代(Kortmann和Henry, 1990)。在春天和初夏,藻类数量丰富,此时可利用的光线和营养充足,少数生物以藻类为食。在这一阶段结束的同时,许多湖泊出现了清水期(CWP)现象。春天的藻类种群由小而可食用的种类组成。在这个阶段,浮游动物急剧增加,并迅速消耗藻类。结果,水在几个星期内都很清澈。这就是为什么这种现象被称为“清水相”。这种藻类种群逐渐被较大的不可食用的物种所取代,这些物种通常被胶状鞘覆盖。由于夏季有效营养物质的浓度有限,夏季总藻类浓度低于春季(CWP前)。 From the late summer and fall, the stored nutrients in the lake are mixed in the water column and a fresh supply of nutrients is produced. This let the algal population for seasonal re-blooming. During the winter months, algae are able to survive, but usually at low concentrations due to the lower amount of available sunlight and low water temperature (Green and Herron, 2001).
藻华
藻类对水生生态系统是有用和必需的,并为几乎所有生物提供初级能量和营养。然而,异常高水平的藻类生长会导致水体功能的干扰,并通过降低水的清晰度降低水的美学。通过遮阳,积聚的藻类阻止光线到达水生植物(大型植物)的根部。过量的藻类生长增加了死藻,导致它们在夏季分解并降低水体中的DO。缺乏氧会导致缺氧,导致鱼类死亡。高水平的藻类也可能增加水体的pH值。pH值的增加似乎是二氧化碳光合作用增加的副产品。在阳光明媚的夏季傍晚,光合作用消耗二氧化碳后,通常会出现高pH值。日落后,由于光合作用过程的结束,pH值可能会显著下降。这些pH值的极端波动会对敏感的水生物种造成压力。There is also the concern that excessive amounts of algal material formed based on the reaction with chlorine used in water treatment, produce trihalomethanes as carcinogens.It is important to realize that the algal growth is occurred through natural cycles in natural ecosystems.The algal bloom is problematic as a result of direct human manipulation on the environment.Managers should be targeted towards maintaining health and natural algal levels in water bodies.
测量藻类浓度
测量藻类浓度以确定水体的富营养化状况。富营养化是湖泊自然老化过程的标志。低营养水域是指清晰度和深度都很高,藻类含量很少的水域。富含藻类的水体是富营养化的,通常是浑浊的。在中间过程中,具有中等藻类水平的中等分辨率湖泊被称为中营养型湖泊。辛普森在1991年宣布,由于藻类是环境变化的一个强有力的指标,在大多数监测项目中,测量藻类浓度来确定水质的变化。藻类和绿色植物需要叶绿素a的绿色色素来进行光合作用。考虑到叶绿素a与生物量的比例在不同的藻类群体中可能会有所不同,叶绿素a的测量被认为是对藻类浓度的合理估计。叶绿素a用丙酮提取。浓度用分光光度计测定。这可能是测定藻类浓度最可靠的方法,而叶绿素a是从藻类细胞中化学提取的。 The advantages of this method are simplicity and stability sampling. There are some of the limitations associated with the measurement of algal biomass using this technique. As such, algae are not evenly distributed throughout the water bodies so it is necessary to take some water samples every day. In Vermont, the volunteers of the monitoring programs have addressed these limitations by taking an integrated sample proposed by EPA. In this method, the volunteers suggested double measurements of the Secchi depth and determined a water sample as the representative of the water column. Another limitation of this method is that the numbers of algal species have naturally a higher level of chlorophyll a than other algal species. In addition, the concentration of chlorophyll a s fluctuates during the day to maximize photosynthesis efficiency of algae. Constant and repeated measurements would be the best way to deal with these kinds of limitations. Taking water samples at the same time of day and the depth of the water column, the sample is collected, it can reduce these discrepancies. URIWW recommends that the samples of chlorophyll a should be taken between 10 am and 2 pm at the deepest point of the water body at a depth of 1 m. One way for indirect measurement of concentration of chlorophyll a is to measure Secchi depth (estimation of waters clarity). The water clarity degree is a result of the amount of suspended maters in the water column. In areas with low sediment input, there is a strong correlation between concentration of chlorophyll a and Secchi depth. Besides, it is possible to estimate the potential algal content in water bodies using measuremnt of total phosphorus.
低营养湖泊的叶绿素A含量约为1-10 g/Lµ,富营养湖泊的叶绿素A含量可达300 g/Lµ。在非洲南部的Hart Bees port等富营养化湖泊中,叶绿素a的最大值甚至可以达到3000 g/Lµ。由于鳄鱼河上高浓度的磷和硝酸盐,这个大坝已经富营养化,鳄鱼河是家庭和工业废水的流入和主要污染源(明尼苏达州污染控制机构,2008年)。总体而言,湖泊富营养化状况由叶绿素a、总磷和Secchi深度决定。每个参数都有自己的弱点。因此,如果将这三个参数结合起来考虑,将有助于完整地描述水质以及水体中水质与藻类生长之间的关系。通过研究生活在湖泊中的藻类物种,可以获得更多关于水质的信息。
有害藻华(HAB)
有害藻华是一种通过释放天然毒素和对其他生物造成机械损伤而对其他生物产生负面影响的藻华,通常与大规模海洋死亡事件有关。有害藻华对海洋哺乳动物和海龟造成有害影响。2004年,佛罗里达州共有107只海豚死亡。北大西洋的危险壁暴露于浮游动物污染程度很高的神经毒素中(Green等人,2001年)。
结论
由于大多数湖泊和水体中有害藻类的生长受到越来越多的关注,因此发现藻类生长的预防、预测和限制机制具有重要意义。很明显,限制藻类生长的最好方法是限制排放到湖泊和水体中的营养物质的数量。化学品、硫酸铜和有机合成物可以作为杀虫剂添加到水体中,以减少藻类的生长。与磷酸盐结合的铝缓冲液或钙化合物有时被添加到水体中,使藻类无法使用。当意识到这些化学物质对减少藻类生长有效时,使用这些材料必须获得环境授权单位的许可,并且必须由授权用户完成。其他控制策略有人工曝气、生物控制和物理消除藻类。在曝气机制中,向水体中添加氧气是为了使磷失活或减少藻华的影响。指出了控制水体中藻类数量的生物控制方法。物理去除藻类可以是水过滤藻类。这种控制方法有不同的结果,也可能代价高昂。 The best controlling method is to limit nutrients in water bodies before getting increased. Until algal levels are not annoying, they play an indispensable role in healthy ecosystems.
参考文献
- 李刘超,唐丹(2012)。南海西部沿海水域藻华的时空变化。水环境研究,2012年9月,第6卷第3期,239-247页。
- 姚军,肖平,张勇,詹敏,程军(2011)。基于复杂网络理论特点的藻华数学模型。生态建模,卷222,问题20-22,2011年10月至11月,页3727-3733。
- 陈建军,陈建军,陈建军(2009)。藻类的繁殖。微生物学百科全书(第三版),2009,第27-41页。
- 倪健,于勇,冯伟,闫强,潘刚,杨斌,张翔,李翔(2010)。壳聚糖改性土壤去除藻华对太湖浮游动物群落的影响环境科学学报,第22卷,第10期,2010年10月,页1500-1507。
- 吴刚,徐铮(2011)。EFDC模型对稻香湖藻华的预测研究生态模型,222卷,第6期,2011年3月24日,1245-1252页
- Barale V., Jaquet j - m。, M.(2008)。根据SeaWiFS数据集(1998-2003)得出的地中海藻华模式和异常。遥感环境,卷112,第8期,2008年8月15日,页3300-3313
- 陈志强,陈志强,陈志强,陈志强(2001)。帷幕控制水库藻华的数值分析。生态工程,第16卷,第3期,2001年1月1日,395-404页。
- Imamura S., Ishiwata ., Watanabe S., Yoshikawa H., Tanaka K.(2013)。出芽酵母FKBP12的表达赋予了单细胞红藻对雷帕霉素的敏感性。《生物化学与生物物理研究通讯》,2013年9月20日,第439卷第2期,264-269页。